CS 1112 Introduction to
Computing Using MATLAB

Instructor: Dominic Diaz

Website:
https://www.cs.cornell.edu/courses/cs111

2/2022fa/

Today: Vectorized code + matrices

https://www.cs.cornell.edu/courses/cs1112/2022fa/
https://www.cs.cornell.edu/courses/cs1112/2022fa/

Agenda and announcements

Last time

©)

Linear interpolation

Today

@)
@)
@)

Vectorized computation
2D arrays - matrix
Talk about prelim

Announcements

@)
@)

Project 2 grades released (Regrade requests due by 10/7 at 11 PM)
Project 3 due Wednesday 10/5 (TOMORROW)

m Late deadline (Thursday 10/6) will only be 5% off (not 10% like usual)
“Check your prelim 1 time/location” on CMS-read the “grading comment” to
find exam time/location. Any request for alternative arrangements
(including conflicting exams) is due as a “regrade request” in CMS by
10/7 at 11 PM.

Ex 07 will be due Thursday 10/13 at 9 PM (due to Fall break)
Prelim topics posted on website (will show on last slide)

Vectorized code

Vectorized code is code that performs element-by-element operations on arrays in
one step.

Why is vectorized code useful:
e Appearance: looks cleaner and closer to math formulas
e Less error prone: less code = less errors
e Performance: vectorized code is typically faster

% add two vectors a and b, elementwise % add two vectors a and b, elementwise
a=/[1, 3, 16, -2, 15, 6, -3]; a=1[1, 3, 16, -2, 15, 6, -3];
b =16, 5, 10, 11, -4, 10, 0]; b =16, 5, 10, 11, -4, 10, 0];

\ectorized code c=a+b;

@)
]

zeros(1, length(a));
for i = 1:1length(a)
c(i) = a(i) + b(i);

end

Both codes output the same vector: ¢ 7 8 26 9 11 16 -3

Vectorized element-wise operations a

"\ b
between VeCtO rs Works on each element individually
Addition [T 1]+ [T} ;=
Subtraction [(TITTT1]- L[] d =

%
Multiplication RN x EEEEEE e =
%
Division [(TIT T 11/ LTI =
% f
Power (T]" [T} g =
% g

[1) 6) -ZJ @J '6) 19];
[-1) 0, 8, 2, 50, '16];

a + b;

[0, 6, 6, 2, 44, -6]

_b;
[2, 6, -10, -2, -56, 26]

a.*b;

[-1, ©, -16, 0, ...]

a./b;

a.

[-1, Inf, -0.25, ...]

/\b;

[1, 1, 256, O, ...]

See a more comprehensive list of element-wise arithmetic operations in chapter 4.1

Vectorized element-wise operations
between a vector and a scalar

Addition (TT1T1]+ O
Subtraction [ITT1T11] - O
Multiplication T x [
Division (ITT111T11/ O
Power EEREEE]

[1) 6) -ZJ @J _6J 19];

b 2;

C =a + b;

% c=1[3, 8 0, 2, -4, 12]
d =a - b;

%»d=1[-1, 4, -4, ...]

e = a*b; % or e = a.*b;
%»e =12, 12, -2, 0, ...]
f = a/b; % or f = a./b;
% f=10.5, 3, -1, 0, ...]
g = a."b;

%g=1[1, 36, 4, © ...]

Simplified rule: for multiplication, division, and power, use

o

v

N
.

Some MATLAB built-in functions can take vectors as inputs

% plot the sine function % plot the sine function
numPts = 25; numPts = 25;

x = linspace(@, 2*pi, numPts); x = linspace(@, 2*pi, numPts);
y = zeros(1l, length(x)); y = sin(x) % creates a vector

for i = 1:length(x)
These codes do the

y(i) = sin(x(i)); o N plot(x,y, "-ob")
end \\\\\\\HL; ' “{////

Approximation to sin(x) with 25 points

plot(x,y, "-ob")

Vectorized code in action

Can we plot the following function? Yes!

sin(ox) ex

1422

) for —2<ax<3

X = 1inspace(-2, 3) 1@@);
y = sin(5*x).*exp(-x/2)./(1 + x."2);
plot(x,y)

Vectorized code in action

sin(5x) exp(—x/2)

f(z) =

1422

scalar * vector

vector / scalar

vector ? scalar

y = sin(5*x).*exp(-x/2)./(1 + x."2);
\\ J N\ ~ J

vector * vector

for —2<x<3

Exercise: try to
recreate this same
result using
non-vectorized
code (use for loop).

End of
prelim 1 material!

1D arrays to 2D arrays

Previously we’ve looked at 1D arrays (representing object
positions, colors, die rolls):

Now we’ll looked at 2D arrays (also called matrices):

2D array: matrix

e An array is a named collection of like data
organized into rows and columns

e A 2D array is like a table, and is also called a
matrix

e Two indices identify the position of a value in a
matrix

A(r,c)

First index: row index
Second index: column index

e Both indices start at 1
e 2D arrays must be rectangular: all rows must
have the same number of columns

Creating a matrix

e Built-in functions: ones, zeros, rand
o zeros(2,3) will create a 2-by-3 matrix of all Os
o zeros(2) will create a 2-by-2 matrix of all Os

e Build a matrix using square brackets, [], but the
dimensions must match up / > 2]°
o X=1[403;5209];
o Y =140 3; ones(1,3)];
o Z = :4/@ 3; ones(3,1)]; % error!

4 0

No way to combine these two
into a matrix while preserving
orientation.

R R

Length of a vector, size of a matrix

v LT

To determine how many elements in a
vector v, use length function

[11 4: 19: -4J 16];
length(v);

n stores length of v

% To determine how many rows/columns in
% a matrix M, use size function

M = [11 2, 5, 7;

3, 9, 9, 6;

4, 3, 2, 0];
[nr, nc] = size(M);

% nr stores number of rows of M
% nc stores number of columns of M

Changing values in a matrix

% Create a matrix of size(2,3) with zeros
M = zeros(2, 3);

% Change the element in row 1, column 1

M(l,l).=9;\
-~

Row number Column number
(row index) (column index)

% Change the element in row 2, column 1
M(2:1) =7,

% Change the element in row 2, column 3
M(213) = M(2:1)3

Poll Everywhere

Example: display all values in a matrix

% Given some matrix M
[nr, nc] = size(M);
for r = 1:nr

for ¢ = 1:nc

What does the computer do?

disp(M(r,c));
r=1,c=1

end r=1,c=2
end r=1,c=4

_;
[

NN NN

0O0O0O0O0

I T I TR TR

aOrWN =G

= =S
in 1

nr=2,nc=5

display M
display M
display M
display M
display M
display M
display M
display M
display M
display M

1 | | | TV 1 A | I | B VR [
@—\OOO\IMC»OOC—N\W

MMMMN-\A-__\
O

P

15 3 -6 -2
08 1$99

Code for traversing a matrix

[nr, nc] = size(M);

% r will loop through row index

for r = 1:nr
% ¢ will loop through column index
for ¢ = 1l:nc

% Do something with M(r,c)

end
end

Example: compute the minimum value in a matrix

function minVal = minInMatrix(M)
% compute the smallest value (minVal) in matrix M, not empty

[nr, nc] = size(M);

for r = 1l:nr _
for ¢ = 1:nc T

Minimum: -6
% see if M(r,c) is the minimum value

end
end

Example: compute the minimum value in a matrix

function minVal = minInMatrix(M)
% compute the smallest value (minVal) in matrix M, not empty

[nr, nc] = size(M);

for r = 1:nr

for ¢ = 1:nc = e
7.0 8 1 99
if M(r,c) < minVal AT <3
end
end

end

Example: compute the minimum value in a matrix

function minVal = minInMatrix(M)
% compute the smallest value (minVal) in matrix M, not empty

[nr, nc] = size(M);

minVal = M(1,1);

for r = 1:nr _
for ¢ = 1:nc T

if M(r,c) < minVal
minVal = M(r,c);

Minimum: -6

end

end
end

How to study for the prelim in this class

Write your own solutions to examples from lecture

Redo exercise problems un-aided

Do review questions (posted on prelim 1 page)

Do one old exam, using notes as needed

Do the second old exam un-aided—this is your best diagnostic
Review specific topics further as necessary

Do third old exam like you are taking the real exam

NOoOORA~WDN -~

Just reading code and solutions will not help!

Check out https://www.cs.cornell.edu/courses/cs1112/2022fa/ -> Exams -> prelim1 for list of topics!

https://www.cs.cornell.edu/courses/cs1112/2022fa/

