
CS 1112 Introduction to
Computing Using MATLAB

Instructor: Dominic Diaz

Website:
https://www.cs.cornell.edu/courses/cs111
2/2022fa/

Today: Vectorized code + matrices

https://www.cs.cornell.edu/courses/cs1112/2022fa/
https://www.cs.cornell.edu/courses/cs1112/2022fa/

Agenda and announcements
● Last time

○ Linear interpolation
● Today

○ Vectorized computation
○ 2D arrays - matrix
○ Talk about prelim

● Announcements
○ Project 2 grades released (Regrade requests due by 10/7 at 11 PM)
○ Project 3 due Wednesday 10/5 (TOMORROW)

■ Late deadline (Thursday 10/6) will only be 5% off (not 10% like usual)
○ “Check your prelim 1 time/location” on CMS–read the “grading comment” to

find exam time/location. Any request for alternative arrangements
(including conflicting exams) is due as a “regrade request” in CMS by
10/7 at 11 PM.

○ Ex 07 will be due Thursday 10/13 at 9 PM (due to Fall break)
○ Prelim topics posted on website (will show on last slide)

Vectorized code
Vectorized code is code that performs element-by-element operations on arrays in
one step.

Why is vectorized code useful:
● Appearance: looks cleaner and closer to math formulas
● Less error prone: less code ⇒ less errors
● Performance: vectorized code is typically faster

% add two vectors a and b, elementwise
a = [1, 3, 16, -2, 15, 6, -3];
b = [6, 5, 10, 11, -4, 10, 0];

c = zeros(1, length(a));
for i = 1:length(a)

c(i) = a(i) + b(i);
end

% add two vectors a and b, elementwise
a = [1, 3, 16, -2, 15, 6, -3];
b = [6, 5, 10, 11, -4, 10, 0];

c = a + b;Vectorized code

7 8 26 9 11 16 -3cBoth codes output the same vector:

Vectorized element-wise operations
between vectors

Addition

Subtraction

Multiplication

Division

Power

a = [1, 6, -2, 0, -6, 10];
b = [-1, 0, 8, 2, 50, -16];

See a more comprehensive list of element-wise arithmetic operations in chapter 4.1

g = a.^b;
% g = [1, 1, 256, 0, ...]

f = a./b;
% f = [-1, Inf, -0.25, ...]

e = a.*b;
% e = [-1, 0, -16, 0, ...]

d = a - b;
% d = [2, 6, -10, -2, -56, 26]

c = a + b;
% c = [0, 6, 6, 2, 44, -6]

+

-

ⅹ

/

^

Works on each element individually

Vectorized element-wise operations
between a vector and a scalar

a = [1, 6, -2, 0, -6, 10];
b = 2;

22 2 2 2 2

Addition

Subtraction

Multiplication

Division

Power

+

-

ⅹ

/

g = a.^b;
% g = [1, 36, 4, 0 ...]

f = a/b; % or f = a./b;
% f = [0.5, 3, -1, 0, ...]

e = a*b; % or e = a.*b;
% e = [2, 12, -2, 0, ...]

d = a - b;
% d = [-1, 4, -4, ...]

c = a + b;
% c = [3, 8, 0, 2, -4, 12]

Simplified rule: for multiplication, division, and power, use .* ./ .^

Some MATLAB built-in functions can take vectors as inputs
% plot the sine function

numPts = 25;

x = linspace(0, 2*pi, numPts);

y = zeros(1, length(x));

for i = 1:length(x)

 y(i) = sin(x(i));

end

plot(x,y, "-ob")

% plot the sine function

numPts = 25;

x = linspace(0, 2*pi, numPts);

y = sin(x) % creates a vector

plot(x,y, "-ob")
These codes do the
same thing!

Vectorized code in action

Can we plot the following function?

x = linspace(-2, 3, 100);
y = sin(5*x).*exp(-x/2)./(1 + x.^2);
plot(x,y)

Yes!

Vectorized code in action

Can we plot the following function?

x = linspace(-2, 3, 100);
y = sin(5*x).*exp(-x/2)./(1 + x.^2);
plot(x,y)

Yes!

scalar * vector vector / scalar vector ^ scalar

vector * vector

Exercise: try to
recreate this same
result using
non-vectorized
code (use for loop).

End of
prelim 1 material!

1D arrays to 2D arrays

Previously we’ve looked at 1D arrays (representing object
positions, colors, die rolls):

Now we’ll looked at 2D arrays (also called matrices):

2D array: matrix

● An array is a named collection of like data
organized into rows and columns

● A 2D array is like a table, and is also called a
matrix

● Two indices identify the position of a value in a
matrix

 A(r,c)

● Both indices start at 1
● 2D arrays must be rectangular: all rows must

have the same number of columns

c

r

A

First index: row index
Second index: column index

Creating a matrix

● Built-in functions: ones, zeros, rand
○ zeros(2,3) will create a 2-by-3 matrix of all 0s
○ zeros(2) will create a 2-by-2 matrix of all 0s

● Build a matrix using square brackets, [], but the
dimensions must match up
○ X = [4 0 3; 5 2 9];
○ Y = [4 0 3; ones(1,3)];
○ Z = [4 0 3; ones(3,1)]; % error!

4 0 3

5 2 9

4 0 3

1 1 1
4 0 3

1

1

1

No way to combine these two
into a matrix while preserving
orientation.

Length of a vector, size of a matrix

Mv

% To determine how many elements in a
% vector v, use length function

v = [1, 4, 10, -4, 16];
n = length(v);

% n stores length of v

% To determine how many rows/columns in
% a matrix M, use size function

M = [1, 2, 5, 7;
 3, 0, 0, 6;
 4, 3, 2, 0];
[nr, nc] = size(M);

% nr stores number of rows of M
% nc stores number of columns of M

Changing values in a matrix
% Create a matrix of size(2,3) with zeros
M = zeros(2, 3);

0 0 0

0 0 0

M

9 0 0

0 0 0

M

9 0 0

7 0 0

M

9 0 0

7 0 7

M
% Change the element in row 2, column 3
M(2,3) = M(2,1);

% Change the element in row 2, column 1
M(2,1) = 7;

% Change the element in row 1, column 1
M(1,1) = 9;

Row number
(row index)

Column number
(column index)

Poll Everywhere

Example: display all values in a matrix

% Given some matrix M
[nr, nc] = size(M);
for r = 1:nr

for c = 1:nc

disp(M(r,c));

end
end

5 15 3 -6 -2

7 0 8 1 99

M

What does the computer do?

nr = 2, nc = 5
r = 1, c = 1 display M(1,1) = 5
r = 1, c = 2 display M(1,2) = 15
r = 1, c = 3 display M(1,3) = 3
r = 1, c = 4 display M(1,4) = -6
r = 1, c = 5 display M(1,5) = -2
r = 2, c = 1 display M(2,1) = 7
r = 2, c = 2 display M(2,1) = 0
r = 2, c = 3 display M(2,1) = 8
r = 2, c = 4 display M(2,1) = 1
r = 2, c = 5 display M(2,1) = 99

Code for traversing a matrix

[nr, nc] = size(M);

% r will loop through row index
for r = 1:nr

% c will loop through column index
for c = 1:nc

% Do something with M(r,c)

end
end

M

Example: compute the minimum value in a matrix

function minVal = minInMatrix(M)
% compute the smallest value (minVal) in matrix M, not empty

[nr, nc] = size(M);

for r = 1:nr
for c = 1:nc

% see if M(r,c) is the minimum value

end
end

5 15 3 -6 -2

7 0 8 1 99

Minimum: -6

Example: compute the minimum value in a matrix

function minVal = minInMatrix(M)
% compute the smallest value (minVal) in matrix M, not empty

[nr, nc] = size(M);

for r = 1:nr
for c = 1:nc

if M(r,c) < minVal

end

end
end

5 15 3 -6 -2

7 0 8 1 99

Minimum: -6

Example: compute the minimum value in a matrix

function minVal = minInMatrix(M)
% compute the smallest value (minVal) in matrix M, not empty

[nr, nc] = size(M);
minVal = M(1,1);
for r = 1:nr

for c = 1:nc

if M(r,c) < minVal
minVal = M(r,c);

end

end
end

5 15 3 -6 -2

7 0 8 1 99

Minimum: -6

How to study for the prelim in this class

1. Write your own solutions to examples from lecture
2. Redo exercise problems un-aided
3. Do review questions (posted on prelim 1 page)
4. Do one old exam, using notes as needed
5. Do the second old exam un-aided–this is your best diagnostic
6. Review specific topics further as necessary
7. Do third old exam like you are taking the real exam

Just reading code and solutions will not help!

Check out https://www.cs.cornell.edu/courses/cs1112/2022fa/ -> Exams -> prelim1 for list of topics!

https://www.cs.cornell.edu/courses/cs1112/2022fa/

